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Two- and three-dimensilonal problems of nonsteady propagation of cracks are
considered in a medium subjected to a homogeneous shear.. The two-dimensional
problem is completely analogous to Broberg's problem [1] of a tension crack,
but 1s solved by a considerably simpler method. The Jjoint investigation of
the two- and three-dimensional cases also has the advantage that a number of
intermediate results of the two-dimensional problem form the basis fer the
solution of the three-dimensional case.

The axisymmetric problem of propagation of a tension crack, the three-
dimensional analogue of Broberg's problem, was solved in paper [2]. In con-
trast to the problem, the one which is solved in the present paper is not
axisymmetrical. However, a certaln generallzation of the method which was
applied in [2] permits construction of the exact solution of the problem at
hand. It 1s assumed here that the surface of the crack has the form of a
circular disk, i.e. that the velocity of propagation does not depend on
direction, It is shown that, in general, this assumption is not borne out,
but that it is possible to indicate a value of the lnitlial stress for which
the assumption is valid. For all other values of the initial stress the
solution which 1s obtained can be considered as an approximate one,

1, PFormulation of the prodlem, a) Two-dimensional
case., A homogeneous and 1sotropic elastlc medium having shear modulus
u and velocitles of propagation of longitudinal and transverse waves @
and » , respectively, fills an unbounded space and 18 in a state of homo-
geneous shear for t < O , so that only one component of the stress tensor
T,.°= 17° 18 nonzero. A crack forms at the instant ¢ = O along the y-axis,
and then propagates in the plane z = O in such a way that the elastic per-
turbations which arise from it do not depend on the coordinate y and are
polarized in the xz plane. The veloclty of propagation of the crack is
assumed constant and 1s denoted by a . The location of the crack i1s shown
in Fig.1l. The shear stresses must disappear on the surface of the crack,
i.e, the perturbations caused by the development of the crack must satisfy

the condition
Tz = —7T for z2=0, [z|<<at
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It can be shown that the displacement vector of the disturbance must be
antisymmetric with respect to the plane 2z = 0 , The shearing displacement
and normal stress then prove to be
W/ ///// odd functions z , which entalls the
f ‘//;-- boundary conditions for 2z = O

T

7 (r
;%;2i;? e Ty =—71 for z=0, jz{lat
/4% 5, =0 for z=0,—oc0 200
at—] 4x=0  gop z=0, z[>at
Z
1.1
Fig. 1

Since the crack and the associated
elastic disturbances are absent for
<0, the initial conditions have the form ( W = {u,, u,} is the displace-

erit vecto
m r) u=0, u=v=0 for t=0

where the dot denotes a time derivative.

In addition to the boundary and initial conditions, 1t 1s necessary to
impose a further condition on the behavior of the solution in the vicinity
of the edge of the crack. As in the case of the tension crack, we shall
assume that the edge of the crack is surrounded by a region on which plastic
straining of the materlal takes place and that the dimensions of this regilon
increase at a constant rate, proportional to the velocity of propagation of
the crack. However, these dimensions are assumed to remain much smaller than
those of the crack itself, so that the plastic reglon may be regarded as
infinitesimally small. We shall also assume that the work expended in for-
mation of the crack 1s proportional to the volume of the plastic reglon, so
that the corresponding rate of doing work can be written in the form

w = 20%C (1.2)
where (¢ 1s a constant which does not depend on « . This rate of doing
work must be equal to the energy flux through a surface enclosing the edge

of the crack and at an infinitesimally small distance from it. From this we
obtain the required condition in the form

lim S t.v dl = a®C (1.3)
540 ;
5
where the contour 15 surrounds one of the edges of the crack and lles at a

distance & from 1t,

In particular, 1t follows from (1.3) that the stress and veloclty compo-
nents must increase as §—'+ with approaching the edge of the crack. It is
easy to see that the components of stress and velocity are homogeneous func-
tions of the coordinates and time of degree zero. Therefore, near the edge
of the crack these must be proportional to vft/g;

It is clear physically that the above-mentioned plastic region must, in
due course, attain some stationary size. Then in (1.3) the right-hand side
becomes constant (and not proportional to time), so that the stresses in the
vicinity of the edge of the crack must eventually become proportional to
V’T7Ti and not to ‘y’,??f That 1s, in due course, the self-similar character
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of the problem, or, 1n other words, the assumption of constancy of the velo-
city of propagation of the crack, will be violated. Thus, the above formu-
lation of the problem i1s valid only for the 1nitial stage of development of
the crack.

b) Three-dimensional cas e, The initial state of
stress of the medium 1s the same as in the two-dimensional case, but the pro-
pagation of the crack now brgins from the origin of coordinates. It will be
assumed that the velocity of propagation of the crack 1s constant and does
not depend on direction, so that the surface of the crack at ¢ > 0 1s

defined by relations
v 2=0 0Kr<<at
in cylindrical coordinates T, @, z . In exactly the same way as for the
two-dimensional case we reduce the problem under consideration to a boundary
value problem for the half-space?Z2 ;? 0 ¢ with the boundary conditions
Ty = — 1° COS @, Tor =T SINQ  for z2=0, r<at

0, =0 for z=0,0<r<Coo; Ur=1Upy =0, for z=0, r>ar (1.4)

and the initial conditions

=0 UW=v=0for t=0 (1.5)
We write the auxiliary condition in the form
lim g vdS == 342
i ) te 2na’e’C (1.6)
3

where Ss is a toroldal surface which surrounds the edge of the crack and
is at a distance &8 from it.

All the remarks made for the two-dimensional case remain in force for the
three~-dimensional problem as well, but now one additional fact makes its
appearance. The requirement (1.6) should, strictly speaking, be formulated
for the neighborhood of each point of the edge of the crack. But it would
then turn out in the general case that the veloclity g , which 1s determined
by this condition, depends on the direction, i.e. the shape of the crack must
differ from a circle, Unfortunately, no method is known at the present time
for solving the problem when the.crack boundary 1s an arbitraty curve. Thus,
some effective value of the speed of propagation of the crack will be obtalned
from the condition (1.6). It should be emphasized that although this prob-
lem in its present formulation is unsuitable for determining the shape of the
crack, its solution.should glve a correct description of the elastic wave
field at long distances from the crack, which 1is of great 1lmportance for
application of this problem in seismology. At the end of Section 4, a value
of the initlal stress will be indicated for which the crack is circular,
even if local fulfillment of the auxiliary condition 1s required (for this
value or)the initial stress the integrand of (1.6) 1s independent of the
angle o).

2. PRunotional-invariant sclutions, In both of the problems which have
been formulated, the components of the stress tensor and the velocity vector
are homogeneous functions of the coordinates and time of degree zero. This
fact permits use of the method of the functional-invariant solutions of

Smirnov and Sobolev. (*) By the use of this method 1t is easy to construct
the solution of the two-dimensional problem for the half-space 2 :> 0 with

*) See Chap. XII of the Russian translation of paper [3].
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the displacement vector polarized in the xz plane and satisfying on the

boundary the condition

;=0 for 1=0, —coC2C 0 2.1)
Omitting the detalls, we write out this soluticn
Uy = Up = 0,0 4 2,9 2,02 = Re V,1'? (%)
u; = v, = v,V 4 v, v,4® = Re Vz(l.!) (ﬂ(l,l))
o, = 0,0 4 g, 0,19 = Re 2;1-2) (.0(1.2)) (2~2)
Ty = Txi” + Tx?), Txgl.z) = Re Txil’z) (0(1.:))

Here " and 9® are determined from Equations (2.3)

8V — ¢t Wz Y et 6 =0, W =t—00z—2)bT—0E =0

and the functions whose real parts occur in {(2.2) are expressed in terms of
a single unknown function V (8) by the relations

20202V (), VA (8) = (1 — 2b20%) V' (B) (2.4)

Ve (@) =
V. (9) = 26V T — BV (9)
VO (8) = — 8 (1 — 2b%92) (b7 — 097V (9)
T®) = — b0V TT— 0V (8), T (8) == 4’;7,,(.32 22V @)
0 8) = — 3,0 (8) = — 2u8 (1 — 2649 V' (8)

One more solucion of a two-dimensional problem, in which the displacement
¥y - axis, 1s required to construct the solution of

the three-dimensional problem, This
solution is determined by the relations

Fuze @
uu'EUy—vy(z)- v‘”: ReV,(ﬂ )

vector is parallel to the

g
- Per 1, = 1.2, t® = Re T,2 (8%) (2.5)
v T, (8) = — WY FT— FVy (9)

L(I,l)'

Fig. 2 In Equations {2.2) and (2.5) the
imaginary 1nstead of the real parts of
the respective functions may be taken.

3. Solution of the two-dimensional prodlem. The relations in the pre-

ceeding Sectlion express the derivatives of the unknown functions in terms of
the derivative of the function V (#). The primitives must be determined so
that the initial conditions are satisfied. It is easy to see that in order
to do this the integration should be carried out along the contours shown in

Fig.2, so that
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2D = L S VY () dh = — i S A2V (A) dh 3.1)
1) 1D
2@ 1 S Va2 ) d = § o — 2000 v 4y an
x = 5 x % — ) ete.

o

12 1®

The initial conditions will be satisfiled if it is required that V’(\) be
regular for — a’l <: Re A <: 0_11 and 1f the principal brances of the radi-
cals V' a@? — A% and Vb ? — A® are chosen so that they are pésitive for
X = 0, which is done by making branch cuts from — g ! to — «» and from
@"! to = along the real axis

The functions ﬁ(l) and ﬁm assume the same values tor 2z = 0
9 = 9® = § = ¢t/ z, and as a result we obtaln

v = %SV (M) dr, 1, = zipbzg AWy da
b2 )2
! l for z=0

where | 18 the contour shown in Fig.3 and
R(MA) = (A — 1, b2 + M (Val— Ry b —at

The expressions (3.2) must satisfy the conditions (1.1). From these con-
ditions and the required behavior of the solution in the vicinity of the edge
of the crack we obtain, by analyzing (3.2),

A
V) =—"—y-~
(a2 — A2 /s

A B ‘
"(A) = 3.4
V' (A) (fL—MW'+(rL—HNrL—PW' for c<Ca<lh (3.4)

2

(3.2)

for 0<Ca<e (3.3)

where ¢ 1s the Rayleigh wave velocity (#(s~?) = 0) . In the case d<g<a,
it can be concluded that there exists no solution having the necessary variation near
the edge of the crack. It can be shown that the integral on the right-hand
slde of (1.3) turns out to be negative in the case g<a< p , 1.e. the auxi-
liary condition cannot be satisfied in this case, In what follows we shall
consider that q < ¢ . With the aid of (3.3) we obtain from the first rela-
tion of (3.2) the displacement of the sides of the crack

Uy = AV — 2 for 2=0, |z|<at (3.5)

The second relation of (3.2) provides an equation for the determination
of 4 . To do thils we deform the contour I , for [ﬁ[ < a? so that it
coincides with the imaginary axis, which can be done since the integrand 1s
regular away from the cuts from + 67! to % q”! and falls off sufficiently
rapidly at infinity. It then follows from (1.1) and (3.2) that

dpd | M — M Y T Y TR
v = 4pb2d S T dA

]



1082 B.V. Kostrov

We shall denote the integral in this formula by I(a) . Then

TO
tmA = TSI A
" A= T @)
; U It remalns now to investigate the behavior
a

ReA

[T

of the solutlon near the edge of the crack

and to satisfy the auxiliary condition (1.3).

When the point (x, z) tends toward the edge
Fig. 3 of the crack, the ends of the contours lu)

and ] approach the point i =o' (as we
approach the right end of the crack). By the method of Laplace it 1s easy
to obtaln the first terms of the asymptotic expansions of the veloclty and
stress components in the form

V264 (ot / 20 Im /Y (), 0P = (0F — 26%) (@t/28) 1m / (¥)
V20V T —a%a? A (at / 20)" Re £V (y)
2) a2 — 2b2 i s (2)
v s A7) Re 1Y)

V= 2pal (20 — o) A (at / 28)"Im {7 ()
D~ 2uat (@ — 26%) A (at / 28)" Im f? ()
0~ 4pba VT — a%a 2 A (at / 26) Re f2 ()

@ gype (1—02/2b%)° (2)
wd LI A(gp) " Re 1 (1) @7

where
|z|=at + dcosy, z="0siny, [V ($) = (cosp — isiny VT — ata?)
2 (p) = (cosp — i sinpV T — a2~

It 1s now easy to compute “the 1imit of the integral on the left-hand side
of (1.3). Using (3.6), we obtain as the result

ey () (=) (1= 3x)]=c @8

This equation determines the velocity of propagation of the crack, o , as

o

a function of the loading 1 .

4, S8olution of the three-dimensional problem. The solution of the three-
dimensional problem will be reduced to a two-dimensional one in the same wey
as was done in [2] for the axlsymmetric problem of a tension crack. The case
under consideration now differs from the previous one 1in that i1t 1s not axi-
symmetrical.

We introduce a cartesian coordinate system x, y, z depending on a para-
meter o and connected to the basic polar system r, ¢, z by the relations
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=rcos(p —o), y=rsin(@— o) z2=2

and we form & superposition of two-dimensional solutions as follows:
T

u = S [u, (2, z, t) cos w + uy, (z, z, t) sin 0] do
-n
where u,{(x, z, t) is determined from (2.2) and u;(x, gz, t) from (2.5). It
1s not difficult to see that the vector which has been obtained satisfles

the equations of motion, the condition

6, =20 for z=0,0<r{ox

and has the necessary dependence on ¢ . Performing the transformation of

variable Q = ¢ —w , and using Equations (2.2) to (2.5), we obtain

T
o — ., (1) (2
W = v, = 0,V 4 ,?, v, = cos ¢ S V.2 (07) cos? Q dQ
-7

™

2% = cos ¢ S [V2® (8®) cos® Q@ — ¥, (8) sin? Q] dQ

Uy = 0o = vV + 2,2, v = —sing S V.0 @Y sin? Q dQ
7e® = — sin @ g V. () sin® @ — ¥, (8?) cos? Q] dQ
u; = v, = v,V + ,®, v, = cos g S V.M (8%%) cos Q 4Q

"
6. = oV + 6,2, o = cos p S 3,00 (ﬁ(u)) cos Q@ dQ

-7
©

D o ® P = cos ¢ S T D (3") cos? Q dQ (4.1)

Tz = T2 z 0
-1
”

W — cos g S [T (8) cos? @ — T, (8?) sin? Q] dQ

Trz

-
n

Tor = To) + Tod, T = —sing@ S TP (8Y) sin? Q dQ
-
®

Tor! = — sin @ S [T (8%) sin? Q — T, ¥ (8?) cos? Q] dQ

-n

In these expressions the functions 'D(‘") are determined from Equations
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t — 9V rcos Q —zVa? — 002 =0
t — 93P rcos Q— Vb — 0 =0

and the integrands are expressed in terms of the two unknown functions L’({»
and V1 (®) 1n accordance witn (2.2) and (2.5), It 1s easy to see thatV (8)
and V; (9) can be regarded as even functions of ¢, since the terms in (4.1)
which correspond to the odd parts of these functions vanish identically. We
introduce the notation

6(1)
8% =

i

F@) =V®), F.(0)=V.(9),

Taking into account that 0V = 8@ =@ =t/rcosQ for =0, 1t
i1s possible to obtain the following expressions from (4.1)

mv,-=ne§[”7°zv' () — (1— 2 )y (V)]Vv—w’ o= 4
—m”«5=ﬁe§v[( —%)F’(v)——”vil’l'(v)]ﬁ, v==0"  (4.2)

}fb"——v v
—( )Vb’—vFl (v)}

r 40T (v) Yo \ o
g Re%[m—_——;(1—70)””)‘

— T %, =Re & [Mp vy
lV

V‘V—Vo

V

A Vb ’—vFl(v)]V—_—v- for z=0

The path of integration l, 1s shown in Fig.4. Expressions (4.2) should
vanish for v,< a~? 1in order to satisfy the initial conditions. This will
be met if 7’(v) and F,‘(yv) are regular, away from the branch cut, from
a~? to « , satisfy the condition

F'(0) == — F,' (0) (4.3)
and fall off faster than +~ ' at infinity. By virtue of the boundary condi-
tions, the first two expressions or (4.2) must vanish for Vo< a“?. In order

for this to occur, F‘(v) and F,’(v) must be regular ,for Re v < a~®. On
the other hand, the last two expressions of

(4.2) must disappear for v,> o 2. For this,

Imv
the integrands must be regular for
L ———
)\ S ——— -3
l v, lv Re B8V>V0>(l .

We shall find F'(v) and F,’(v) from these
conditions and from the required behavior of
Fig. 4 the stresses in the viclnity of the edge of
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the crack. It can be shown that, as in the two-dimensional problem, the
auxiliary condition cen be satisfled only for o < o . Then the functions
F'(v) and F, ’(v) in the form

F'(w) = —Fy (V) = —=

@i =V
satisfy the required conditions, { 4 18 an as yet undetermined constant).
Analogously to Equation (4.2), we can obtain for g = 0

s =VeosgRe [ [2F () —(1— %) A (0] 5=

ly

v¢=—Vv_osinq>ReS[( F)FO) = F (v)]v]/v—-\'o

v (4.4)
r,,=—VVocos¢Be§v[%G(v>—( )Gm)] e
Te: = Vv, sin ¢ Re §’ [( — 1;9—) G (v) — =G, (v)] Vv-—vo
where , ,
F(v) = SF’ Mdr, F,(v) = SF; M\ dh, G(v) = S }f’; RA)_ g (r)dn

0 [
v

G, (v) =p S VET—AF () dh

0

The lower limit is chosen equal to zero h re so that the integrands of
(4.4) are regular for v = O , which is necessary in order to satisfy the
initial conditicns. The functions F(v) and Fx(V) are easlly calculated;
we obtain for the result

14
F)=—F() = Py
and we find from (M.:&
_ ¢ : 24
v,——Zucoswﬁ;:_‘_’_:—_ﬁ, =:2:tSln(pV:"’—:r’. for z=0, r<at (4.5)

We transform the expressions for G{v) and ¢, (v) in the following way:

_ OOAL_ 20 RO prondh — M+ Gr
G (v) 4p.b}v F' (v)dv + 4pb vB,oV""—”F(v)dx M + G* (v)

v

Gy =u \ VETZSF, (ydv+p § VETRE, W) dh = M, + G* ()

The terms in (4.4) which correspond to g*(v) and o,(v) disappear for
Vo> @ -4, since the integrands containing these functions are regular for

Re v > vy>a~?. Thus,

T:=— (M — M))ncoso, Toz=(M — M))nsing for =0, r<at
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By comparing these values with the boundary conditions (1.4), we obtain

(M—M)a=r°
or
= s(vEYpp—vYaT L vV v = e dv
v S [+ Vi + VT V| ey 46)
We denote the integral in this equation by I, (¢) and set A= —mA .
Then 4 ©
17 phh(a) (4.7)

Now, integrating Equation (4.5) with respect t& time, we find
up =240 cosQ Vot — %, u,= — 24,asing V ot — 2

or, in Cartesian coordinates

up =224, Va*t—rl,  uy=0 for 2=0,r <t (4.9)

(4.8)

for z=0,r a

where £ = T CO8Q, ¥ = r Sin Q. Thus, the direction of the displacement of
the edges of the crack coincides with the direction of the initlal stress.

By the method which was discussed in [2], asymptotic expressions can be
obtained for the veloclities and stresses near the edge of the crack
) =~ 2b%4, cos @ (2at / 8) Im £V (),
=~ (o — 2b*) A, cos @ (2at / 8)* Im ¥ ()
vV =0(1), v~ —a’4,sing(2at/8)” Im j® ()
W = 23V T—a%a 4, cosg (2at/ 8)" Re f¥ ()

2,

2% = (a?— 26%)(1 — %) " 4, cos @ (2t / )" Re /¥ (y)
0 = — 2pa? (a? — 2b%) A4, cosq (2at/ )" Im 7Y (y) (4.10)
0. = 2pa1 (a? — 2b%) A, cos@ (2at/ )" Im £ (y)
T =~ — 4pbta V1 = aBa 4, cosq (2at / 8)” Re f2 ()
T e pb ot (1 — a%73) 7 (af — 2533 4, cos (2at/ 8)" Re /P (¥)
T =0 (1), 10 ~paV T—atb4,sing (2at/8)" Re f¥ )
where r = af + 8 cosP, z = 88in P, and the functions f (Y) ana f® (y)

are the same ag in (3.7). With the aid of these expressions we obtain from
the condition (1.6), the following relation:

33
B[V 1 —afa YT — a3 — (1 —a?/2b%)%]
nd, S{ ¥V 1—a%"i

+ V1 —at3sin’q}dp =C (4.11)

cos®q +

0

It is evident from this that, as was noted during the formulation of the
problem, the velocity a must, strictly speaking, be a function of ¢, since
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in the general case the integrand depends on 9 for constant o . However,
there exists one value of g , hamely,

2 % 2
a=¢1=b(1" 9a2f—16b5) <e (4.12)

for which the integrand in {%.11) is seen to be constant, since in this case
the coefficients of ¢os®¢ and sin®? @ are the same. For this value of aqa ,
the crack will have a circular shape, The corresponding value of the initial
stress i1s obtained from (4.7), (4.11), and (4.12)

v ) = oo T o) [ € (1 = 2] (443

Performing the integration with respect to ¢ in (4.11) in the general
case, we obtain Equation

» N - = [q__2\? T3 —C
M?: (1)12 {V 1mffazb-z [V 1—a?a Y 1—a® (1 2b8) ]“ﬁﬂ/i ’ }(4.14)

which determines some effective value of ¢ . It i1s clear that the closer
7% is to the value in {4.13), the better will the solution which has been
constructed describe the phenomenon of propagation of the crack.

The author 1s grateful to N.V. Zvolinskii for his interest in this work.
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