
SELBSIMILAR PROBLEMS OD PROPAGATION 
OP SHEAR CRACKS 

(NllwmEL’rn 2AMoIa 0 nMPR~TnArlmI1 
TII55IM U8A5’Woo RAzmrVA) 

PMM vo1.28, w 5, 1964, pp. 889-898 

B.V. KON’ROV 

(Moscow) 

(Received April 10, 1964) 

Two- and three-dimensional problems of nonstehdy propagation of cracks are 
considered in a medium subjected to a homogeneous shear.- The two-dimensional 
problem 1s completely analogous to Broberg’s problem [l] of a tension crack, 
but Is solved by a considerably simpler method. The .lolnt lnvestlnatlon of 
the two- and three-dimensional-Oases also has the advantage that a-number of 
Intermediate results of the two-dimensional problem form the basis for the 
solution of the three-dimensional case. 

The axlsymmetrlc problem of propagation of a tension crack, the three- 
dlmensdIona1 analogue of Broberg’s problem, was solved In paper [2]. &I con- 
trast to the nroblem, the one which Is solved in the present Paper is not 
axlsymmetrlcai. 

_ _ 
However, a certain generalization of-the method which was 

applied ln [2] permits construction of the exact solution of the problem at 
hand. It ie aesumed here that the surface of the crack has the form of a 
circular disk, I.e. that the velocity of propagation does not depend on 
direction. It 1s shown that, In general, this assumption is not borne out, 
but that It Is possible to Indicate a value of the Initial stress for which 
the assumption Is valid. For all other values of the Initial stress the 
solution which Is obtained can be considered as an approximate one. 

1. Pormuhtlan of tlu problan. a) T w o - d I m e n s I o n a 1 

case. A homogeneous and Isotropic elastic medium having shear modulus 

CI and velocities of propagation of longitudinal and transverse waves a 

and b, respectively, fills an unbounded space and Is In a state of homo- 

geneous shear for t c 0 , so that only one component of the stress tensor 

7 O=T” II* ie nonzero. A crack forms at the instant t = 0 along the y-axle, 

and then propagates- ln the plane s = 0 ln such a way that the elastic per- 

turbations which arise from It do not depend on the coordinate y and are 

polarized In the rs plane. The velocity of propagation of the crack Is 

assumed constant and Is denoted by a . The location of the crack Is shown 

In Plg.1. The shear stresses must disappear on the surface of the Crack, 

i.e. the perturbations caused by the development of the crack must satisfy 

the condition 
z XL= -_ for z=O, [zIGat 
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It can be shown that the displacement vector of the disturbance must be 

antisymmetric with respect to the plane .?=O. The shearing displacement 

and normal stress then prove to be 

odd functions I , which entails the 

boundary conditions for z = 0 

7,,=-T! for z=O, jz[<at 

t 
a+--4 ux = 0 for z=o, IsI>at 

z 
1.1 

Pig. 1 Since the crack and the associated 

elastic disturbances are absent for 

1<0, the Initial conditions have the form ( u = {u,, u,] Is the dlsplace- 

merit vector) 
u = 0, u =v=o for t = 0 

where the dot denotes a time derivative. 

In addition to the boundary and Initial condltlons, it Is necessary to 

Impose a curther condition on the behavior of the solution In the vlclnlty 

of the edge of the crack. As In the case of the tension crack, we shall 

assume that the edge of the crack Is surrounded by a region on which plastic 

straining of the material takes place and that the dimensions of this region 

increase at a constant rate, proportional to the velocity of propagation of 

the crack. However, these dimensions are assumed to remain much smaller than 

those of the crack Itself, so that the plaetlc Feglon may be regarded as 

lnfiniteslmally small. We shall also assume that the work expended in for- 

mation of the crack Is proportional to the volume of the plastic region, so 

that the corresponding rate of doing work can be written In the form 

w = 2aztC (1.2) 

where C Is a constant which does not depend on a . This rate of doing 

work must be equal to the energy flux through a surface enclosing the edge 

of the crack and at an lnflnlteslmally small distance from It. Prom this we 

obtain the required condition in the form 

lim \ t,v dl = a2tC (I.31 

where the contour IS surrounds one of the edges of the crack and lies at a 

distance b from It. 

In particular, It follows from (1.3) that the stress and velocity compo- 
nents must increase as 6-‘/* with approaching the edge of the crack. It Is 
easy to see that the components of stress and velocity are homogeneous func- 
tions of the coordinates and time of degree zero. Therefore, near the edge 
of the crack these must be proportional to ft 16. 

It is clear physically that the above-mentloned plastic region must, in 
due course, attain some stationary size. Then in (1.3) the right-hand slde 
becomes constant (and not proportional to time), so that the stresses In the 
vicinity of the edge, of the crack must eventually become proportional to 
r/1/-b: and not to r/*7x That is, In due course, the self-similar character 
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of the problem, or, in other words, the assumption of constancy of the velo- 
city of propagation of the crack, will be violated. Thus, the above formu- 
lation of the problem is valid only for the initial stage of development of 
the crack. 

b) Three -dimensional case. The lnltial state of 

stress of the medium is the same as In the two-dimensional case, but the pro- 

pagation of the crack now brgins from the origin of coordinates. It will be 

assumed that the velocity of propagation of the crack is constant and does 

not depend on direction, so that the surface of the crack at. t z 0 is 

defined by relations 
z = 0, o\<r<at 

in cylindrical coordinates r, cp, z , In exactly the same way as for the 

two-dimensional case wz reduce the problem under consideration to a boundary 

value problem for the half-spaceZ> 0 C with the boundary conditions 

z rz = - r0 cos cp, ‘Ic,, = z” sin ‘p for z=O, r<at 

a* = 0 for z=o,o~r<oo; ur=ulq'= 0; for z=O, r>at (1.4) 
and the initial conditions 

u=o u’ E v = 0, for t =O (I.51 
We write the auxiliary condition In the form 

lim &v ci3 = 2mSt2C 
c &ro * 

S8 
(1.6) 

where S8 is a toroldal surface which surrounds the edge of the crack and 

is at a distance b from it. 

All the remarks made for the two-dimensional case remain In force for the 
three-dimensional problem as well but now one additional fact makes its 
appearance. The requirement (1.6) should, strictly speaking, be formulated 
for the neighborhood of each point of the edge of the crack. But It would 
then turn out In the general case that the velocity r~ , which Is determined 
by this condition, depends on the direction, I.e. the shape of the crack must 
differ from a circle. Unfortunately, no method Is known at the present time 
for solving the problem when the.crack boundary is an arbltraty curve. Thus, 
some effective value of the speed of propagation of the crack will be obtained 
from the condition (1.6). It should be emphasized that although this prob- 
lem In its present formulation is unsuitable for determining the shape of the 
crack, Its solutlon.should give a correct description of the elastic wave 
field at long distances from the crack, which is of great importance for 
application of this problem in seismology. At the end of Section 4, a value 
of the Initial stress will be indicated for which the crack is circular, 
even If local fulfillment of the auxlllary cond.itlon Is required (for this 
value of the inltlal stress the lntegrand of (1.6) is independent of the 
angle cp). 

2, Punotlon&l-lnvm4urt rolutlona. In both of the problems which have 

been formulated, the components of the stress tensor and the velocity vector 

are homogeneous functions of the coordinates and time of degree zero. This 

fact permits use of the method of the functional-invariant solutions of 

Smlrnov and Sobolev. ( l ) By th e use of this method It is easy to construct 

the solution of the two-dimensional problem for the half-space 2 > 0 with 

*) See Chap. XII of the Russian translation of paper 133. 
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the displacement vector polarized In the xz plane and satlsfylng on the 
boundary the condition 

az=o for z=o, -oo<x<oo (2.1) 
hitting the details, we write out this solutlcn 

*- ux = v, = v=(l) + v,@), q(1.2) E Re Vr(l.2) (f)(l.¶)) 

uz 
*- 
= v, = &(l) + Q(2), v,(~.2) = Re &(l*‘) (@‘)) 

6, = CT,(l) + a,@), o;(l.U = Re $1.2' (,('*2)) (2.2) 

- q..l) + Z,i2), 

Here ;;x)-md f-+2) 

Tx;1t2) = &-, T,!'*2' (#'.2') 

are determined from Equations (2.3) 
it&l) - t _ ()(‘)z - ga-2 - f)w = 0, b(2) s t - em),- zJ/b-2 - fit212 = 0 

and the functions whose real parts occur In (2.2) are expressed In terms of 

a single unknown function V(6) by the relations 

v!&?” (6) = 2bW2V’ (6), lp’(f+) = (1 - 2bW) v’ (6) 

V/) (6) = 2b26 V-V (tl) 

(2.4) 

VJ2)’ (6) = - fi (1 - 2bYt2) (b-2 - 62)“‘V’ (fl) 

T,!“(@ = _ 4pJ)yp va-2 - 92 V’ (a), T,!“’ (8) = - 4y@‘--*yd4” ‘v’ (6) 

&(l)’ (6) = _ XL(‘)’ (0) = - 2@ (1 - 2bW2) V’ (6) 

two-dimensional problem, In which the displacement 

y-axis, is requlred to construct the solution of 

the three-dimensional problem. This 

solution Is determined by the relations 

One more soluclon of a 

vector is parallel to the 

Fig. 2 In Equations (2.2) and (2.5) the 

Imaginary Instead of the real parts of 

the respective functions may be taken. 

3. 6OlUbiW of bha bwod~~20nrl $mblata. The relations in the pre- 

ceedlng Section express the derivatives of the unknown functions in terms of 

the derivative of the function V(6). The primitives must be determined so 

that the Initial conditions are satisfied. It Is easy to see that in order 

to do this the Integration should be carried out along the contours shown in 

Flg.2, so that 



,p 1 =- 
2i s llx(l)’ (A) dh = - ib2 

s 
A2 v’ (A) dh 

l(l) l(1) 
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(3.1) 

Q) 1 
=2i \ 11,(‘) (A) dh = & \ (1 - 2b2h2) v’ (A) dh etc. 

l(2) r(2) 

The initial conditions will be satisfied if it is required that V’(X) be 

regular for - U-’ < RI3 A < a-‘, and If the principal brances of the radl- 

cals v/am2 - A2 and 7/be2 - h2 are chosen so that they are p6sltlve for 

x-o, which 1s done by making 
a-1 to m along the real axis 

The functions @) and e(2) 

f)(l) = f)(*) = 6 - t / z, and as 

branch cuts from - a-’ to - m and from 

assume the same values for t = 0 , 

a result we obtain 

T x2 = 
(3.21 

v, = +\I” (A) dh, 
1 

where 1 is the contour shown In Fig.3 and 

R (h2) = (A2 - 1/2 b-2)* + A2 &-2 - h”J/ b-2 _ j.2 

The expressions (3.2) must satisfy the conditions (1.1). From these con- 

ditions and the required behavior of the solution in the vicinity of the edge 

of the crack we obtain, by analyzing (3.2), 

(3.3) v’ (h) = A 
(a-2 _ haf/* 

for O<a <c 

v’ (h) = A 
(a-a _ pp + 

B 
(c-2 _ Aa) (a-2 _ AZ)‘/1 

for c<a<b (3.4) 

where o Is the Raylelgh wave velocity (A(cSa) = 0) . In the case b< a<a, 

it, can be concluded that there exlsta no solutlm havlng the necessary var! ltlon near 

the edge of the crack. It can be shown that the Integral on the right-hand 

side of (1.3) turns out to be negative In the case o <a< b , I.e. the auxl- 

llary condition cannot be satisfied ln this case. In what follows we shall 

consider that a c o . With the aid of (3.3) we obtain from the first rela- 

tion of (3.2) the displacement of the sides of the crack 

u, = aAva2t2 - x2 for Z = 0, 1 z 1 <a: (3.5) 

The second relation of (3.2) provides an equation for the determination 

of A . To do this we deform the contour 1 , for lfil <Cl-’ so that it 

coincides with the Imaginary axis, which can be done since the lntegrand Is 

regular away from the cuts from f a-1 to f 0-l and falls off sufficiently 

rapidly at Infinity. It then follows from (1.1) and (3.2) that 
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We shall denote the integral in this formula by ~(a) . Then 

Imh A= z0 
4pb2Z (a) (3.6) 

c? 
1 

It remains now to investigate the behavior 

-Ti 
Reh 

of the solution near the edge of the crack 

and to satisfy the auxiliary condition (1.3). 

When the point (x, E ) tends toward the edge 

Fig. 3 of the crack, the ends of the contours I?(I) 

and l(s) approach the point h = d-l (as we 

approach the right end of the crack). Ey the method of Laplace it is easy 

to obtain the first terms of the asymptotic expansions of the velocity and 

stress components In the form 

Vi” z 2b2A (at / 26)“’ Im f(l) ($), ~2~) z (a2 - 2b2) (at/2d)“g Im f(‘) (Q) 

up z 2b2 VI - cz2C2 A (at / 26)“’ Re f(l) (Q) 

(2) a2 - 2ba VL z A (_%)“* Re f(‘) (q) 
Jf 1 - crab-2 

o,(l) z 2pcf1 (2b2 - a”) A (at / 26)“’ Im f(l) ($) 

a*(2) - - 2pcC (a” - 2b2) A (at / 2d)l” Im f(‘) (q) 

z (1) - 4pb2a-’ vl - CZ~~-~A (at / 26) Re f(l) (9) xz - 

% 
(2) ~ ,,Qb2 (1 - aa /2bsJa 

a v/1 -aab-a 
A ($)I” Re f(‘) ($1 (3.7) 

where 

1x1 =ut + 15 cos$, 2 = 6 sin*, f(l) ($) = (co.5 II, - i sin 9 VI - U2U-2)+r 

f(‘) ($) = (cos $ - i sin $1/l - a2b-2)-1” 

It Is now easy to compute’the limit of the integral on the left-hand side 

of (1.3). Using (3.6), we obtain as the result 

rc+ 
~ [(I-$y(1-%)‘1.- (I-$+ (3.8) 

16pb2 [f(a)]2 1/l- a2b-a 

This equation determines the velocity 

a function of the loading T’ . 

of propagation of the crack, a , as 

4. Bolutlon of the three-dlmanrlonrl problem. The solution of the three- 

dimensional problem will be reduced to a two-dimensional one in the same way 

as was done In [2] for the axlsymmetric problem of a tension crack. The case 

ur,der consideration now differs from the previous one in that it is not aXi- 

symmetrical. 

We introduce a Cartesian coordinate system X, y, z depending on a para- 

meter UI and connected to the ba:;ic polar system r, Q, z by the relations 
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2 = rcos (cp - a), y = r sin (9 - a), 2=2 

and we form a superposition of two-dimensional solutions as follows: 

u = j lu, (5, 2, t) cos w + ua (2, 2, t) sin 01 
--A 

where U, (x, t, t) Is determined from (2.2) and Ua(x, 

1s not difficult to see that the vector which has been 

the equations of motion, the condition 

bz = 0 for z = 0, o<r<m 

do 

s, t) from (2.5). It 

obtained satisfies 

and has the necessary dependence on cp . Performing the transformation of 

varlable n = cp - UJ , and using Equations (2.2) to (2.5), we obtain 

4 ‘. E vr = vr(l) + v,(2), v,(‘) = cos cp 5 Vl”’ (,(“) cos2 52 dQ 
--x 

0, @) = cos ‘p [ [Qa) (6f)ca)) cos’ Q - V, (6”‘) sin2 Szl dQ 
--rr 

Urp’ G VQ = TV,(~) f V,(2), Vpd” = _ sin cp [ vi’) (e(1)) sin2 Q dQ 

-77 

n 

(2) _ 
VQ - - sin q 

s 
[ Vx”’ (6(“) sin2 52 - I’, (@‘) co9 Q] d!G? 

:: 
I 

UZ * s vz = p + v,(9), VZ (1.1) = cos tp 
s 

Vz(lsa) (6(‘*‘)) cos 51 dS2 
-n 

n 

(1) 
Trz = cos cp s T$ (f)(l)) cosa G! dQ (4.1) 

--II 

(I) 
Trz = cos cp j [T.$’ (P) cosa !a - T$’ (tYca)) sin2 Q] dP 

-x 
n 

T,, = 7;;) + T,f’, ‘F,jl) = - sin ‘p 
s 

Z’$ (+I(“) sin2 s2 dS2 
--x 

(I) _ 
TQZ - - sin p j [T$’ (P) sin2 !J - T,f’ (f+‘)) cos2 S-21 dS2 

, -I 

In these expressions the functions f)(“) are determined from Equations 
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p E t - fp F CO9 !i2 - 2 vk2 - f)(‘ja = 0 

and the lntegrands are expressed In terms of the two unknown functions v (@ 
and V, (6) in accordance with (2.2) and (2.5). It 1s easy to see thatV(f)) 

and v1 (6) can be regarded as even functions of 6, since the terms In (4.1) 

which correspond to the odd parts of theee functions vanish identically. We 

introduce the notation 

F (ft2) = V (fi), F1 P2) = V, (8) . 

Taking into account that 6(l) = f)(‘) = 6 E t / F COS R for I = 0 , It 

is possible to obtain the following expressions from (4.1) 

r - vr’ = Re \ I]+ F’ (v) - (1 -+) bF1’ (v)] v&o , 
2cosq 

L 

~0 = 5 

r 
- -v~=~e 1 [(I-_)F’ (v)-$~~(v)]~& , V=P 

2 Sill cp (4.2) 
L 

r - 
2/& cos 0 

7 rt’ = Re F’ (v) ‘,” 

- (+‘))/=F,‘(v)] vv_$+ 

r . 

2~ sin cp Gz 
= Re (I- +) F’ (v) - 

The path of Integration lv Is shown In Flg.4. Expressions (4.2) should 

vanish for v,< c-= in order to satisfy the Initial conditions. This will 

be met If F’(V) and F,‘(V) are regular, away from the branch cut, from 

c-2 to m , satisfy the condition 

F’ (0) =- - F,’ (0) (4.3) 

and fall off faster than v-l at infinity. By virtue of the boundary condl- 

tions , the first two expressions or’ (4.2) must vanish for vO< am2. In order 

for this to occur, F’ (1,) and F, ’ (v) must be regular ,for Re v < as2 . On 

the other hand, the last two expressions of 

-* 

(4.2) must disappear for v,> a-‘. For this, 

the lntegrands must be regular for 

He v > v. > ama. 

Fig. 4 

We shall find F’(V) and Fl’(v) from these 

conditions and from the required behavior of 

the stresses in the vicinity of the edge of 
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the crack. It can be shown that, as in the two-dimensional problem, the 

auxlllary condition c&n be satisfied only for Q < o . lien the functions 
F’(W) and F,‘(V) ln the form 

F’ (9 = - FI’ (VI = ,,_*A_ v)a 

satisfy the required conditions, ( A le an a8 yet undetermined constant). 

Analogously to Equation (4.2)) we can obtain for t = 0 

where 

F(v) = i F’ (A) dk, F, (v) = i F,’ (k) dA, 
” 4b’R (i) 

0 0 

G (‘9 = P 1 1/m F’ (A) dk 
0 

G, (v) = p j vb-” - hF’,(k) dh 
0 

The lower llmlt Is chosen equal to zero h re so that the tntegrands of 

(4.4) are regular for v - 0 , which Is necessary In order to satisfy the 
initial condltlcns. The functions F(v) and F,(V) are easily calculated; 

we obtain for the result 

F (v) = - F,(v) = $$ 

and we find from (4.4) . . 
0, = - 2ll coscp a8At 

)/n-- 2% =2rrsincp kF 
?f - ra for 2 = 0, r < at (4.5) 

We tranaform the expressions for G(v) and G,(v) in the following way: 

G(v) = 4pb* -r R(V) F’ (v) dv + 4pb2 i vz 
o’ Jfb-a-- v 

F’ (v) clh = M + G* (v) 
YaJ 

G&)-p-f&=- vFl’ (v) dv -+ p i vb-” - hF,’ (A) dh = M, + G,* (v) 
0 yo3 

The terms In (4.4) which correspond to Q*(v) and G,*(V) disappear for 

v,> a-‘, since the lntegrands containing these functions are regular for 

Re v > v, > cSa . Thus, 

z rz=-(M-M&n~~s~, T,,=(M-MJnsincp for z=o, r<at 
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q Comparing these values with the boundary conditions (1.4), we obtain 

(M-MJn=T" 

OF 

We denote the integral in this equation by I,(a) and set A:= - no 

Then 
AI=z 

Gl(a) 

Now, integrating Bquatlon (4.5) with respect tb time, we find 

. 

(4.7) 

(4.8) 
u,=2A,acoscp’C/aat2-P, U, = - 2A,asincp~a2te - r2 for z = 0, r < a 

or: in Cartesian coordinates 

f&=2UAJ~ %=O for z=O, r<al (4.9) 

where X=rc~(#,y=rsiIIcp.Thw, the dlrectlon of the displacement of 

(4.6) 

the edges of the crack coincides with the direction of the initial stress. 

By the method which was discussed ln [2], asymptotic expressions can be 

obtained for the velocities and stresses near the edge of the crack 

v!') z 2baAl coscp (2at / 6)‘” Im f”) (q), 

q(a) - - (aD - 2P) A, cosg, (2at / 6)‘“Im f(*) (q) 

vp z 0 (I), v,p) =: - aa A, sin cp (2at / S)“s Im f@) (q) 

~2~) z W VI - a20A, coscp (2at / S)‘h Re fl) (+) 

Up 25 (a’- 2b’)( I - a%ea)-“a A, cos cp (2at / S)“* Re f@) (9) 

(I (1) - 
2. - - 21.4~~’ (a” - 2b*) A, coscp (2at / a)“’ Im f(l) (q) 

U la’ z 2pa-’ (aa - 2P) Al coscp (2at / 6)“’ Im f” (q) 

7::’ L - 4p.b2as1 vi - aaOAl cosq~ (2ut / ~3)“~ Re j(l) (9) 

(4.10) 

7,:) z pb-*a-l(1 - as&a)‘/’ (a¶ - 2W Al COSC~ (2at / 6)“’ Re f” (+) 

7,!‘) z 0 (I), 7 0) w z pa vi - a*bb-aAl sin q (2at / &)1’8 Re f@) (q) 

where r=d+dC@J$, 2 = 8 Sin 9, and the functions +"($) and f'*'($) 

are the same as In (3.7). With the aid of these expressions we obtain from 

the condition (1.6), the following relation: 

~l'~{~~~~-~s~-a~~~~~~-~~-~lJ~~~llcos~~ + 

0 

+ as VI - a*&’ sins cp} d.q = C (4.11) 

It ia evident from this that, as was noted during the formulation of the 
problem, the velocity o must, strictly apeaking, be a function of ml since 
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in the general case the integrand depends on rp for Constant a . However, 

there exists one value of o , namely, 

(4.12) 

for which the lntegrand in (4.11) Is seen to be constant, since In this case 

the coefficients of ooS2cp and Sina rp are the same. For this value of a , 
the crack will have a circular shape, The corresponding value of the initial 

stress Is obtained from (4.7), (4.11), and (4.12) 

(4.13) 

Performing the integration with respect to cp In (4.11) in the general 

case, we obtain Equation 

3tZ@ 4b= 

P [II @Ia y’f-u*b-a 
~jIZP1/l-a2b-2- (I- ~)e]+a2t/l-a26-2}=C 

(4.14) 

whrch determines some effective value of a . It Is clear that the closer 

TO is to the value In (4.13), the better will the solution which 

constructed describe the Dhenomenon of propagation of the crack. 
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